10x^2-9=7x^2+19

Simple and best practice solution for 10x^2-9=7x^2+19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x^2-9=7x^2+19 equation:



10x^2-9=7x^2+19
We move all terms to the left:
10x^2-9-(7x^2+19)=0
We get rid of parentheses
10x^2-7x^2-19-9=0
We add all the numbers together, and all the variables
3x^2-28=0
a = 3; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·3·(-28)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*3}=\frac{0-4\sqrt{21}}{6} =-\frac{4\sqrt{21}}{6} =-\frac{2\sqrt{21}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*3}=\frac{0+4\sqrt{21}}{6} =\frac{4\sqrt{21}}{6} =\frac{2\sqrt{21}}{3} $

See similar equations:

| 475=50w+225 | | r−26=2 | | v=23−3 | | 100(1.5^x)=200 | | b=4(10) | | m5=8 | | 100(x+2)=800 | | 3x=5x−6 | | 10^x+4=62 | | -150=-6(7a+4) | | 3t=5t−6 | | 5u=4+6u | | (X+1)(x+2)=7x-1 | | -23=t-0.01 | | (X+1)(x+2)-(7x-1)=0 | | 5^x=52 | | -285=-5+8(-7+4p) | | 10y=26 | | -7y-3=-4 | | Y=32.50x+65 | | -5+7n=9+11 | | X-8(5-7x)=320 | | 6x+8=4×+2 | | 2(14+4z)=-44 | | S=-3t+94 | | 3x+40=2x+11 | | 5x+2x+9=20+9/3 | | 56+2x+6=90 | | H=63-5.4t | | 4.0=x-3.9 | | Y=$0.13x+$3.68 | | 8x+4=55 |

Equations solver categories